Auslegung Solargenerator 2

Unsere Beispiel-Anlage soll nur im Sommer betrieben werden und der Solargenerator auf dem bestehenden Gartenhaus mit einer Dachneigung von 25° dachparallel befestigt werden.

Damit ist die grobe Selbstreinigung der Module gewährleistet, die ab einer Dachneigung von 20° bei Regen und Schneeabgang greift.

Unter http://re.jrc.ec.europa.eu/pvgis/ rufen wir die Einstrahlungsdaten ab. (siehe Bild).

Wie erhalten wir aus den Eintrahlungswerten aus der Tabelle den möglichen Tagesertrag aus einem Solargenerator?

Wir nehmen an, dass die Einstahlung auf ein <u>Solarmodul</u> trifft. Die Leistung des Solarmoduls kennen wir bei STC-Bedingungen. Daher "normieren" wir die Einstrahlungswerte auf die <u>STC</u> Einstrahlung und erhalten so die "<u>normierte</u> Einstrahlungsdauer". Wenn wir diese mit der <u>Leistung</u> des Moduls unter STC-Bedingungen multiplizieren, erhalten wir den Tagesertrag.

$$Tagesertrag_{\textit{LeistungMaduil,Ori,Neigung}}[\frac{Wh}{d}] = \frac{Tages - Energiemen\,ge_{\textit{Ori,Neigung}}[Wh/\textit{m}^2*d]*LeistungModul[Wp]}{STC - Einstrahlung[W/\textit{m}^2]}$$

$$Tagesertrag_{\textit{LeistungMaduil,Ori,Neigung}}[\frac{Wh}{d}] = "normierteE\ instrahlungsdauer" \frac{[Wh/\textit{m}^2*d]}{[W/\textit{m}^2]}*LeistungModul[Wp]$$

• oder bei unserem Beispiel bei der Verwendung eines 100 Wp-Moduls im März:

$$\begin{split} & \textit{Tagesertrag}_{100Wp, \textit{Shutgar}, 25^*}[\frac{Wh}{d}] = \frac{3090 \, _{\textit{Shutgar}, 25^*}[Wh/m^2*d]*100[Wp]}{1000[W/m^2]} \\ & \textit{Tagesertrag}_{100Wp, \textit{Shutgar}, 25^*}[\frac{Wh}{d}] = 3,09 \, \frac{[Wh/m^2*d]}{[W/m^2]}*100[Wp] = 3,09 \, [\frac{h}{d}]*100[W] = 309 \, [\frac{Wh}{d}]*100[W] = 309 \, [\frac{$$

re.jrc.ec.europa.eu/pvgis/apps4/MRcalc.php

Monthly Solar Irradiation

PVGIS Estimates of long-term monthly averages

Location: 48 \$46'31" North, 9 \$10'54" East, Elevation: 252 m a.s.l.,

Solar radiation database used: PVGIS-classic

Optimal inclination angle is: 34 degrees
Annual irradiation deficit due to shadowing (horizontal): 0.1 %

Month	H_k	H(25)	T_{24k}
Jan	835	1170	0.7
Feb	1550	2070	2.9
Mar	2580	3090	6.0
Apr	3900	4300	9.8
May	4880	5020	14.5
Jun	5180	5180	17.9
Jul	5310	5410	19.5
Aug	4520	4870	19.4
Sep	3220	3810	15.2
Oct	1870	2400	11.2
Nov	1030	1440	5.1
Dec	647	907	1.8
Year	2970	3310	10.3

 H_{k} : Irradiation on horizontal plane (Wh/m²/day) H(25): Irradiation on plane at angle: 25 deg. (Wh/m²/day) T_{28k} : 24 hour average of temperature (Φ C)

PVGIS © European Communities, 2001-2010 Reproduction is authorised, provided the source is acknowledged See the disclaimer <u>here</u>

Auslegung Solargenerator 2

1